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In a supplier-retailer-buyer supply chain, the supplier frequently offers the retailer a trade credit of
S periods, and the retailer in turn provides a trade credit of R periods to her/his buyer to stimulate sales
and reduce inventory. From the seller’s perspective, granting trade credit increases sales and revenue but
also increases opportunity cost (i.e., the capital opportunity loss during credit period) and default risk
(i.e., the percentage that the buyer will not be able to pay off her/his debt obligations). Hence, how to
determine credit period is increasingly recognized as an important strategy to increase seller’s profitabil-
ity. Also, many products such as fruits, vegetables, high-tech products, pharmaceuticals, and volatile
liquids not only deteriorate continuously due to evaporation, obsolescence and spoilage but also have
their expiration dates. However, only a few researchers take the expiration date of a deteriorating item
into consideration. This paper proposes an economic order quantity model for the retailer where: (a)
the supplier provides an up-stream trade credit and the retailer also offers a down-stream trade credit,
(b) the retailer’s down-stream trade credit to the buyer not only increases sales and revenue but also
opportunity cost and default risk, and (c) deteriorating items not only deteriorate continuously but also
have their expiration dates. We then show that the retailer’s optimal credit period and cycle time not only
exist but also are unique. Furthermore, we discuss several special cases including for non-deteriorating
items. Finally, we run some numerical examples to illustrate the problem and provide managerial insights.

� 2014 Elsevier B.V. All rights reserved.
Introduction

In practice, the seller usually provides to her/his buyer a per-
missible delay in payments to stimulate sales and reduce inven-
tory. During the credit period, the buyer can accumulate the
revenue and earn interest on the accumulative revenue. However,
if the buyer cannot pay off the purchase amount during the credit
period then the seller charges to the buyer interest on the unpaid
balance. One of the first works along this line of research is Goyal
(1985). He established the retailer’s optimal economic order
quantity (EOQ) when the supplier offers a permissible delay in
payments. On the other hand, Shah (1993) then considered a sto-
chastic inventory model for deteriorating items when delays in
payments are permissible. Later, Aggarwal and Jaggi (1995)
extended the EOQ model from non-deteriorating items to deterio-
rating items. Jamal, Sarker, and Wang (1997) further generalized
the EOQ model with trade credit financing to allow shortages.
After, Teng (2002) provided an easy analytical closed-form solution
to this type of problem. Afterwards, Huang (2003) extended the
trade credit problem to the case in which a supplier offers its retai-
ler a credit period, and the retailer in turn provides another credit
period to its customers. Furthermore, Liao (2008) extended
Huang’s model to an economic production quantity (EPQ) model
for deteriorating items. Subsequently, Teng (2009) provided the
optimal ordering policies for a retailer to deal with bad credit cus-
tomers as well as good credit customers. Conversely, Min, Zhou,
and Zhao (2010) proposed an EPQ model under stock-dependent
demand and two-level trade credit. Later, Kreng and Tan (2011)
obtained the optimal replenishment decision in an EPQ model with
defective items under trade credit policy. After, Teng, Krommyda,
Skouri, and Lou (2011) obtained the optimal ordering policy for
stock-dependent demand under progressive payment scheme. Fur-
ther, Teng, Min, and Pan (2012) extended the demand pattern from
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constant to increasing in time. Recently, Ouyang and Chang (2013)
built up an EPQ model with imperfect production process and
complete backlogging. Concurrently, Chen, Cárdenas-Barrón, and
Teng (in press) established the retailer’s optimal EOQ when the
supplier offers conditionally permissible delay in payments link
to order quantity. In all articles described above, the EOQ/EPQ
models with trade credit financing were studied only from the per-
spective of the buyer. How to determine the optimal credit period
for the seller has received only a few attentions by the researchers
such as Chern, Pan, Teng, Chan, and Chen (2013) and Teng and Lou
(2012). Currently, Seifert, Seifert, and Protopappa-Sieke (2013)
organized the trade credit literature and derived a detailed agenda
for future research in trade credit area.

It is well know that many products such as vegetables, fruits,
volatile liquids, blood banks, fashion merchandises and high-tech
products deteriorate continuously due to several reasons such as
evaporation, spoilage, obsolescence among others. In this course,
Ghare and Schrader (1963) proposed an EOQ model by assuming
an exponentially decaying inventory. Then Covert and Philip
(1973) generalized the constant exponential deterioration rate to
a two-parameter Weibull distribution. Later, Dave and Patel
(1981) established an EOQ model for deteriorating items with
linearly increasing demand and no shortages. Then Sachan
(1984) further extended the EOQ model to allow for shortages.
Conversely, Goswami and Chaudhuri (1991) generalized an EOQ
model for deteriorating items from a constant demand pattern to
a linear trend in demand. Concurrently, Raafat (1991) provided a
survey of literature on continuously deteriorating inventory model.
On the other hand, Hariga (1996) studied optimal EOQ models for
deteriorating items with time-varying demand. Afterwards, Teng,
Chern, Yang, and Wang (1999) generalized EOQ models with short-
ages and fluctuating demand. Later, Goyal and Giri (2001) wrote a
survey on the recent trends in modeling of deteriorating inventory.
Teng, Chang, Dye, and Hung (2002) further extended the model to
allow for partial backlogging. Skouri, Konstantaras, Papachristos,
and Ganas (2009) established inventory EOQ models with ramp-
type demand rate and Weibull deterioration rate. In a subsequent
paper, Skouri, Konstantaras, Papachristos, and Teng (2011) further
generalized the model for deteriorating items with ramp-type de-
mand and permissible delay in payments. Mahata (2012) proposed
an EPQ model for deteriorating items under retailer partial trade
credit policy. Recently, Dye (2013) studied the effect of technology
investment on deteriorating items. Wee and Widyadana (2013)
developed a production model for deteriorating items with stochastic
preventive maintenance time and rework. Although a deteriorating
item has its own expiration date (a.k.a., maximum lifetime), none
of the above mentioned papers take the maximum lifetime into con-
sideration. Currently, Bakker, Riezebos, and Teunter (2012) wrote a
review of inventory systems with deterioration since 2001.

In this paper, we propose an EOQ model for the retailer to ob-
tain her/his optimal credit period and cycle time when: (a) the sup-
plier grants to the retailer an up-stream trade credit of S years
while the retailer offers a down-stream trade credit of R years to
the buyer, (b) the retailer’s down-stream trade credit to the buyer
not only increases sales and revenue but also opportunity cost and
default risk, and (c) a deteriorating item not only deteriorates con-
tinuously but also has its maximum lifetime. We then formulate
the retailer’s objective functions under different possible cases. In
fact, the proposed inventory model forms a general framework that
includes many previous models as special cases such as Goyal
(1985),eng (2002), Teng and Goyal (2007), Teng and Lou (2012),
Lou and Wang (2013), Wang, Teng, and Lou (2014), and others.
By applying concave fractional programming, we prove that there
exists a unique global optimal solution to the retailer’s replenish-
ment cycle time. Similarly, using Calculus we show that the
retailer’s optimal down-stream credit period not only exists but
also is unique. Furthermore, we discuss a special case for non-dete-
riorating items. Finally, we run several numerical examples to
illustrate the problem and provide some managerial insights.

The rest of the paper is designed as follows. To establish the
proposed EOQ model, we define the notation and assumptions in
section ‘Notation and assumptions’. Then we derive mathematical
expressions of the relevant factors and the retailer’s annual total
profit function under each distinct possible case in section ’Math-
ematical model’. In section ’Theoretical results and optimal solu-
tion’, we show that both the optimal cycle time and the optimal
trade credit exist uniquely by applying concave fractional pro-
gramming and Calculus, respectively. In section ’Some special
cases’, several previous EOQ models with trade credit financing
are shown to be special cases of the proposed model including
those non-deteriorating items. Numerical examples and sensitivity
analysis are presented to illustrate the model and provide manage-
rial insights in section ’Numerical examples’. Finally, the conclu-
sion and future extensions of the proposed model are established
in section ’Conclusions and future research’.

Notation and assumptions

The following notation and assumptions are used in the entire
paper.

Notation

For the retailer
o
 ordering cost per order in dollars.

c
 purchase cost per unit in dollars.

p
 selling price per unit in dollars, with p > c.

h
 unit holding cost per year in dollars excluding

interest charge.

r
 annual compound interest paid per dollar per year.

Ie
 interest earned per dollar per year.

Ic
 interest charged per dollar per year.

t
 the time in years.

I(t)
 inventory level in units at time t.

h(t)
 the time-varying deterioration rate at time t, where

0 6 h(t) < 1.

m
 the expiration date or maximum lifetime in years of

the deteriorating item.

S
 up-stream credit period in years offered by the

supplier.

R
 down-stream trade credit period in years offered by

the retailer (a decision variable).

D = D(R)
 the market annual demand rate in units which is a

concave and increasing function of R.

T
 replenishment cycle time in years (a decision

variable).

Q
 order quantity.

TP(R,T)
 total annual profit, which is a function of R and T.

R⁄
 optimal down-stream credit period in years.

T⁄
 optimal replenishment cycle time in years.

TP⁄
 optimal annual total profit in dollars.
Assumptions

Next, the following assumptions are made to establish the
mathematical inventory model.

1. All deteriorating items have their expiration dates. Hence, the
deterioration rate must be closed to 1 when time is approaching
to the expiration date m. We may assume that the deteriorating
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rate is h(t) = k/(k + m � t), or h(t) = ek(t�m), where k is a constant.
However, to make the problem tractable, we assume that the
deterioration rate is the same as that in Sarkar (2012) and Wang
et al. (2014) as follow:
hðtÞ ¼ 1
1þm� t

; 0 6 t 6 T 6 m: ð1Þ

Note that it is clear from (1) that the replenishment cycle time T
must be less than or equal to m, and the proposed deterioration
rate is a general case for non-deteriorating items, in which
m ?1 and h(t) ? 0.

2. Similar to the assumption in Chern et al. (2013) and Teng and
Lou (2012), we assume that the demand rate D(R) is a positive
exponential function of the retailer’s down-stream credit period
R as
DðRÞ ¼ KeaR; ð2Þ
where K and a are positive constants with 0 < a < 1. For conve-
nience, D(R) and D will be used interchangeably.

3. The longer the retailer’s down-stream credit period, the higher
the default risk to the retailer. For simplicity, we may assume
that the rate of default risk giving the retailer’s down-stream
credit period R is assumed as
FðRÞ ¼ 1� e�bR; ð3Þ

where b is the coefficient of the default risk, which is a positive
constant.

4. If the annual compound interest rate is r, then a dollar received
at time t is equivalent to e�rt dollars received now. The retailer
offers the buyer a credit period of R. Hence, the retailer’s net
revenue received after default risk and opportunity cost is:
pDðRÞ½1� FðRÞ�e�rR ¼ pKeaRe�bRe�rR ¼ pKe½a�ðbþrÞ�R: ð4Þ
0 +
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Fig. 1. R 6 S and S 6 T + R.
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Fig. 2. R 6 S and T + R 6 S.
5. If T P S, then the retailer settles the account at time S and pays
for the interest charges on items in stock with rate Ic over the
interval [S, T]. If T 6 S, then the retailer settles the account at
time S and there is not interest charge in stock during the whole
cycle. On the other hand, if S > R, the retailer can accumulate
revenue and earn interest during the period from R to S with
rate Ie under the up-stream and down-stream trade credit
conditions.

6. Replenishment rate is instantaneous.
7. In today’s time-based competition, we may assume that short-

ages are not allowed to occur. Given the above notation and
assumptions, it is possible to formulate the retailer’s annual
total profit as a function of the down-stream trade credit R
and the replenishment cycle time T for deteriorating items with
maximum lifetime into a mathematical model.

Mathematical model

During the replenishment cycle [0, T], the inventory level is
depleted by demand and deterioration, and hence governed by
the following differential equation:

dIðtÞ
dt
¼ �D� hðtÞIðtÞ; 0 6 t 6 T; ð5Þ

with the boundary condition I(T) = 0. Solving the differential Eq. (5),
we get

IðtÞ ¼ e�dðtÞ
Z T

t
edðuÞDdu; 0 6 t 6 T; ð6Þ

where

dðtÞ ¼
Z t

0
hðuÞdu ¼

Z t

0

1
1þm� u

du

¼ lnð1þmÞ � lnð1þm� tÞ ¼ ln
1þm

1þm� t

� �
: ð7Þ
Substituting (7) into (6), we obtain the inventory level at time t as

IðtÞ ¼ D
1þm� t

1þm

� �Z T

t

1þm
1þm� u

du

¼ Dð1þm� tÞ ln 1þm� t
1þm� T

� �
; 0 6 t 6 T: ð8Þ

As a result, the retailer’s order quantity is

Q ¼ Ið0Þ ¼ Dð1þmÞ ln 1þm
1þm� T

� �
: ð9Þ

Therefore, the retailer’s holding cost excluding interest cost per
cycle is

h
R T

0 IðtÞdt ¼ hD
R T

0 ð1þm� tÞ ln 1þm�t
1þm�T

� �
dt

¼ hD ð1þmÞ2
2 ln 1þm

1þm�T

� �
þ T2

4 �
ð1þmÞT

2

h i
:

ð10Þ

From the values of R and S, we have two potential cases: (1)
R 6 S, and (2) R P S. Let us discuss them separately.

Case 1. R 6 S
Based on the values of S (i.e., the time at which the retailer must

pay off the purchase amount to the supplier to avoid interest
charge) and T + R (i.e., the time at which the retailer receives the
payment from the last customer), we have two possible sub-cases.
If T + R > S (i.e., there is an interest charge), then the retailer pays
off all units sold by S � R at time S, keeps the profits, and starts pay-
ing for the interest charges on the items sold after S � R, which is
shown in Fig. 1. If T + R 6 S (i.e., there is no interest charge), then
the retailer receives the total revenue at time T + R, and will pay
off the total purchase cost at time S. The graphical representation
of this case is shown in Fig. 2. Now, let us discuss the detailed for-
mulation in each sub-case.

Sub-case 1-1: S 6 T + R
In this sub-case, the supplier’s up-stream credit period S is

shorter than or equal to the customer last payment time T + R.
Hence, the retailer cannot pay off the purchase amount at time S,
and must finance all items sold after time S � R at an interest
charged Ic per dollar per year. As a result, the interest charged
per cycle is (c/p)Ic times the area of the triangle BCD as shown in
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Fig. 1. Notice that (i) the vertical axis in Figs. 1–3 represents the
cumulative revenue, not cumulative sale volume, and (ii) the slope
of the increasing line in Figs. 1–3 is pD. Therefore, the interest
charged per year is given by

cIcD
2T
ðT þ R� SÞ2; ð11Þ

which is similar to Eq. (3) in Teng and Lou (2012).
On the other hand, the retailer sells deteriorating items at time

0, but receives the money at time R. Thus, the retailer accumulates
revenue in an account that earns Ie per dollar per year from R
through S. Therefore, the interest earned per cycle is Ie multiplied
by the area of the triangle RSC as shown in Fig. 1. Hence, the inter-
est earned per year is similar to Eq. (4) of Teng and Lou (2012) as

pIeDðS� RÞ2

2T
: ð12Þ

The retailer’s ordering cost per cycle is o dollars, and the purchase
cost per cycle is c I(0) dollars. Hence, the retailer’s annual total prof-
it can be expressed as follows

TP1(R,T) = net annual revenue after default risk and opportunity
cost � annual purchase cost � annual ordering cost � annual hold-
ing cost excluding interest cost � interest charged + interest
earned

¼ pKe½a�ðbþrÞ�R � cð1þmÞ
T

KeaR ln
1þm

1þm� T

� �
� o

T

� h
T

KeaR ð1þmÞ2

2
ln

1þm
1þm� T

� �
þ T2

4
� ð1þmÞT

2

" #

� cIc

2T
KeaRðT þ R� SÞ2 þ pIe

2T
KeaRðS� RÞ2: ð13Þ

Next, we discuss the other sub-case in which S P T + R.
Sub-case 1-2: S P T + R
In this sub-case, the retailer receives the total revenue at time

T + R, and is able to pay off the total purchase cost at time S. Hence,
there is no interest charge while the interest earned per cycle is Ie

multiplied by the area of the trapezoid on the interval [R,S] as
shown in Fig. 2. Consequently, the retailer’s annual interest earned
is

pIeDT2

2T
þ pIeDTðS� T � RÞ

T
¼ pIeKeaR S� R� T

2

� �
: ð14Þ

Hence, similar to (13), we know that the retailer’s annual total profit
is

TP2ðR; TÞ ¼ pKe½a�ðbþrÞ�R � cð1þmÞ
T

KeaR ln
1þm

1þm� T

� �
� o

T

� h
T

KeaR ð1þmÞ2

2
ln

1þm
1þm� T

� �
þ T2

4
� ð1þmÞT

2

" #

þ pIeKeaR S� R� T
2

� �
:

ð15Þ
We know from (13) and (15) that

TP1ðR; S� RÞ ¼ TP2ðR; S� RÞ: ð16Þ

Finally, we formulate the retailer’s annual total profit for the case of
R P S below.

Case 2. R P S
Since R P S, there is no interest earned for the retailer. In addi-

tion, the retailer must finance the entire purchase cost at time S,
and pay off the loan from time R to time T + R. Consequently, the
interest charged per cycle is (c/p)Ic multiplied by the area of the
trapezoid on the interval [S,T + R], as shown in Fig. 3. Thus, the
interest charged per year is given by

cIcD
2
½2ðR� SÞ þ T�: ð17Þ

Hence, the retailer’s annual total profit is

TP3ðR; TÞ ¼ pKe½a�ðbþrÞ�R � cð1þmÞ
T

KeaR ln
1þm

1þm� T

� �
� o

T

� h
T

KeaR ð1þmÞ2

2
ln

1þm
1þm� T

� �
þ T2

4
� ð1þmÞT

2

" #

� cIcKeaR R� Sþ T
2

� �
:

ð18Þ

Therefore, the retailer’s objective is to determine the optimal credit
period R⁄ and cycle time T⁄ such that the annual total profit TPi(R,T)
for i = 1, 2, and 3 is maximized. In the next section, we characterize
the retailer’s optimal credit period and cycle time in each case, and
then obtain the conditions in which the optimal T⁄ is in either
T + R 6 S or T + R P S.
Theoretical results and optimal solution

To solve the problem, we apply the existing theoretical results
in concave fractional programming. We know from Cambini and
Martein (2009) that the real-value function

qðxÞ ¼ f ðxÞ
gðxÞ ð19Þ

is (strictly) pseudo-concave, if f(x) is non-negative, differentiable
and (strictly) concave, and g(x) is positive, differentiable and
convex. For any given R, by applying (19), we can prove that the
retailer’s annual total profit TPi(R,T) for i = 1, 2, and 3 is strictly
pseudo-concave in T. As a result, for any given R, there exists a un-
ique global optimal solution T�i such that TPi(R,T) is maximized. Sim-
ilar to section ’Mathematical model’, we discuss the case of R 6 S
first, and then the case of R P S.
Optimal solution for the case of R 6 S

By applying the concave fractional programming as in (19), we
can prove that the retailer’s annual total profit TPi(R,T) for i = 1, and
2 is strictly pseudo-concave in T. Consequently, we have the
following theoretical results.
Theorem 1. For any given R,
(a) TP1(R,T) is a strictly pseudo-concave function in T, and hence
exists a unique maximum solution T�1.

(b) If S 6 T�1 þ R, then TP1(R,T) subject to S 6 T + R is maximized at
T�1.

(c) If S P T�1 þ R, then TP1(R,T) subject to S 6 T + R is maximized at
S � R.
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Proof. See Appendix A. h

To find T�1, taking the first-order partial derivative of TP1(R,T),
setting the result to zero, and re-arranging terms, we get

@TP1ðR; TÞ
@T

¼ 1
T2 oþ ð1þmÞKeaR c þ hð1þmÞ

2

� �
ln

1þm
1þm� T

� ���

� T
1þm� T

�	
þ KeaR

2T2 ðS� RÞ2ðcIc � pIeÞ

� KeaR

4
ðhþ 2cIcÞ ¼ 0: ð20Þ

For any given T, taking the first-order partial derivative of TP1

(R,T) with respect to R, setting the result to zero, and re-arranging
terms, we have

@TP1ðR; TÞ
@R

¼ ½a� ðbþ rÞ�pKe½a�ðbþrÞ�R

� acð1þmÞ
T

KeaR ln
1þm

1þm� T

� �

� ah
T

KeaR ð1þmÞ2

2
ln

1þm
1þm� T

� �
þ T2

4
� ð1þmÞT

2

" #

� aKeaR

2T
½cIcðT þ R� SÞ2 � pIeðS� RÞ2�

� KeaR

T
½cIcðT þ R� SÞ þ pIeðS� RÞ� ¼ 0: ð21Þ

Taking the second-order partial derivative of TP1(R,T) with respect
to R, and re-arranging terms, we obtain

@2TP1ðR; TÞ
@R2 ¼ ½a� ðbþ rÞ�2pKe½a�ðbþrÞ�R

� a2cð1þmÞ
T

KeaR ln
1þm

1þm� T

� �

� a2h
2T

KeaRð1þmÞ ð1þmÞ ln 1þm
1þm� T

� �
� T

� �

� 1
4

a2hTKeaR � a2KeaR

2T
cIc T þ R� Sð Þ2 � pIeðS� RÞ2
h i

� 2aKeaR

T
½cIcðT þ R� SÞ þ pIeðS� RÞ� � KeaR

T
ðcIc � pIeÞ:

ð22Þ

To identify whether R�1 is 0 or positive, let’s use (21) to define the
discrimination term

DR1 ¼ ½a� ðbþ rÞ�p� acð1þmÞ
T

ln
1þm

1þm� T

� �

� ah
T
ð1þmÞ2

2
ln

1þm
1þm� T

� �
þ T2

4
� ð1þmÞT

2

" #

� a
2T
½cIcðT � SÞ2 � pIeS2� � 1

T
½cIcðT � SÞ þ pIeS� ð23Þ

Then applying the following lemma, we can prove Theorem 2
below.
Lemma 1. For all T > 0,

1þm
T

ln
1þm

1þm� T

� �
> 1: ð24Þ
Proof. The proof is the same as that in Wang et al. (2014). Let’s set

LðTÞ ¼ ð1þmÞ ln 1þm
1þm� T

� �
� T:
It is clear that L(0) = 0. Taking the first-order derivative of L(T), we
yield L0ðTÞ ¼ 1þm

1þm�T � 1 > 0, for all T > 0. Therefore, L (T) > 0, for all
T > 0. This completes the proof. h

Theorem 2. For any given T > 0, if [a � (b + r)]2p � a2c 6 0, and
h
2 ðaTÞ2 þ cIc ½aðT þ R� SÞ þ 2f �2 � 2g � pIe 2� 2� aðS� RÞ½ �2

n o
P 0.

then we obtain

(a) TP1(R,T) is a strictly concave function in R, and hence exists a
unique maximum solution R�1.

(b) If DR1 6 0, then TP1(R,T) is maximized at R�1 ¼ 0.
(c) If DR1 > 0, then there exists a unique R�1 > 0 such that TP1(R,T) is

maximized.
Proof. See Appendix B. h

Likewise, applying the concave fractional programming to
TP2(R,T), we obtain the following results:

Theorem 3. For any given R,

(a) TP2(R,T) is a strictly pseudo-concave function in T, and hence
exists a unique maximum solution T�2.

(b) If S P T�2 þ R, then TP2(R,T) subject to S P T + R is maximized at
T�2.

(c) If S 6 T�2 þ R, then TP2(R,T) subject to S P T + R is maximized at
S � R.
Proof. See Appendix C. h

To find T�2, taking the first-order partial derivative of TP2(R,T),
setting the result to zero, and re-arranging terms, we get

@TP2ðR; TÞ
@T

¼ 1
T2 oþ ð1þmÞKeaR c þ hð1þmÞ

2

� �
ln

1þm
1þm� T

� ���

� T
1þm� T

�	
� 1

4
ðhþ 2pIeÞKeaR ¼ 0: ð25Þ

To identify which one is the optimal solution (i.e., either T�1 or T�2),
let’s define the discrimination term

DT ¼ oþ ð1þmÞKeaR c þ hð1þmÞ
2

� �
ln

1þm
1þm� Sþ R

� ��

� S� R
1þm� Sþ R

�
� 1

4
ðhþ 2pIeÞKeaRðS� RÞ2: ð26Þ

Combining Theorems 1 and 3, and Eq. (16), we can prove the follow-
ing theoretical results:

Theorem 4. For any given R,

(a) If DT > 0, then the retailer’s optimal cycle time is T�2.
(b) If DT = 0, then the retailer’s optimal cycle time is S � R.
(c) If DT < 0, then the retailer’s optimal cycle time is T�1.
Proof. See Appendix D. h

Next, we discuss the optimal trade credit for TP2(R,T). For any
given T, taking the first-order partial derivative of TP2(R,T) with
respect to R, setting the result to zero, and re-arranging terms, we have

@TP2ðR;TÞ
@R

¼ ½a�ðbþ rÞ�pKe½a�ðbþrÞ�R�acð1þmÞ
T

KeaR ln
1þm

1þm�T

� �

�ah
T

KeaR ð1þmÞ2

2
ln

1þm
1þm�T

� �
þT2

4
�ð1þmÞT

2

" #

þapIeKeaR S�R�T
2

� �
�pIeKeaR¼0: ð27Þ
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Taking the second-order partial derivative of TP2(R,T) with respect
to R, and re-arranging terms, we obtain
@2TP2ðR; TÞ

@R2 ¼ ½a� ðbþ rÞ�2pKe½a�ðbþrÞ�R

� a2cð1þmÞ
T

KeaR ln
1þm

1þm� T

� �

� a2h
2T

KeaRð1þmÞ ð1þmÞ ln 1þm
1þm� T

� �
� T

� �

� 1
4

a2hTKeaR þ a2pIeKeaR S� R� T
2

� �
� 2apIeKeaR:

ð28Þ
To identify whether R�2 is 0 or positive, let’s use (27) to define the
discrimination term

DR2 ¼ ½a� ðbþ rÞ�p� acð1þmÞ
T

ln
1þm

1þm� T

� �

� ah
T
ð1þmÞ2

2
ln

1þm
1þm� T

� �
þ T2

4
� ð1þmÞT

2

" #

þ apIe S� T
2

� �
� pIe: ð29Þ

By applying Lemma 1, we have the following result.

Theorem 5. For any given T > 0, if [a � (b + r)]2p � a2c 6 0, and
a(S � R � T/2) 6 2, then we obtain

(a) TP2(R,T) is a strictly concave function in R, and hence exists a
unique maximum solution R�2.

(b) If DR2 6 0, then TP2(R,T) is maximized at R�2 ¼ 0.
(c) If DR2 > 0, then there exists a unique R�2 > 0 such that TP2(R,T) is

maximized.
Proof. See Appendix E. h

4.2. Optimal solution for the case of R P S

Again, applying the concave fractional programming, one can
obtain that the retailer’s annual total profit TP3(R,T) is strictly pseu-
do-concave in T. Consequently, we have the following theoretical
results.

Theorem 6. For any given R, TP3(R,T) is a strictly pseudo-concave
function in T, and hence exists a unique maximum solution, T�3.
Proof. See Appendix F. h

To find T�3, taking the first-order partial derivative of TP3(R,T)
with respect to T, setting the result to zero, and re-arranging terms,
we get

@TP3ðR; TÞ
@T

¼ 1
T2 oþ ð1þmÞKeaR c þ hð1þmÞ

2

� ��

ln
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� T

1þm� T
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4
ðhþ 2cIcÞKeaR ¼ 0: ð30Þ

For any given T, taking the first-order partial derivative of TP3 (R,T)
with respect to R, setting the result to zero, and re-arranging terms,
we yield
@TP3ðR; TÞ

@R
¼ ½a� ðbþ rÞ�pKe½a�ðbþrÞ�R

� acð1þmÞ
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� �
¼ 0: ð31Þ
Taking the second-order partial derivative of TP3(R,T) with respect
to R, and re-arranging terms, we obtain

@2TP3ðR; TÞ
@R2 ¼ ½a� ðbþ rÞ�2pKe½a�ðbþrÞ�R

� a2cð1þmÞ
T

KeaR ln
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For simplicity, let’s define another discrimination term

DR3 ¼ ½a� ðbþ rÞ�p� acð1þmÞ
T
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Theorem 7. For any given T > 0, if [a � (b + r)]2p � a2c 6 0, then we
get:

(a) TP3(R,T) is a strictly concave function in R, and hence exists a
unique maximum solution R�3.

(b) If DR3 6 0, then TP3(R,T) is maximized at R�3 ¼ 0.
(c) If DR3 > 0, then there exists a unique R�3 > 0 such that TP3(R,T) is

maximized.
Proof. See Appendix G. h

Next, we show that the proposed model is a general case of
many previous models such as Goyal (1985), Teng (2002), Teng
and Goyal (2007), Teng and Lou (2012), Lou and Wang (2013),
Wang et al. (2014), and others.

Some special cases

Firstly, if there is no expiration date (i.e., the maximum lifetime
is approaching to infinity), then the proposed model becomes for
non-deteriorating items. From Calculus, we get

lim
m!1

1þm
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ln
1þm

1þm� T

� �� �
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m!1

d
dm ln 1þm
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dm
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2
4

3
5

¼ lim
m!1

1þm
1þm� T

¼ 1: ð34Þ

Consequently, the retailer’s order quantity per cycle in (9) becomes

Q ¼ Ið0Þ ¼ Dð1þmÞ ln 1þm
1þm� T

� �
¼ DT when m!1: ð35Þ

Similarly, we can obtain

lim
m!1

ð1þmÞ2
2 ln 1þm

1þm�T

� �
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h i
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m!1
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�T
ð1þmÞð1þm�TÞþ
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�2
ð1þmÞ3
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¼ 1
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m!1
T2ð1þmÞ

2ð1þm�TÞ

h i
¼ 1

4 lim
m!1

T2 ¼ T2

4 :

ð36Þ



Table 1
Sensitivity analysis on parameters.

Parameter R⁄ T⁄ TP⁄(R⁄,T⁄)

a = 0.20 0.9718 0.0651 $9,603.63
a = 0.25 2.2313 0.0544 $10,460.60
a = 0.30 3.0396 0.0457 $12,006.99

b = 0.01 0.9718 0.0651 $9,603.63
b = 0.02 0.1841 0.0703 $9,479.02
b = 0.03 0.0548 0.0712 $9,465.64

K = 1000 0.9718 0.0651 $9,603.63
K = 2000 1.0290 0.0406 $19,567.26
K = 3000 1.0541 0.0376 $29,590.19

p = 20 0.9718 0.0651 $9,603.63
p = 25 3.3276 0.0516 $16,426.78
p = 30 5.2970 0.0425 $25,634.53

c = 10 0.9718 0.0651 $9,603.63
c = 12 0.0000 0.0660 $7,449.93
c = 14 0.0000 0.0624 $5,417.10

o = 20 0.9718 0.0651 $9,603.63
o = 15 0.9980 0.0564 $9,685.96
o = 10 1.0290 0.0460 $9,783.63

h = 2 0.9718 0.0651 $9,603.63
h = 4 0.9472 0.0582 $9,528.42
h = 8 0.9045 0.0492 $9,399.00

m = 1.0 0.9718 0.0651 $9,603.63
m = 1.5 0.9854 0.0701 $9,646.58
m = 2.0 0.9949 0.0740 $9,677.04
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As a result, we know that the retailer’s holding cost excluding inter-
est charge per cycle in (10) is simplified to

lim
m!1

hD
ð1þmÞ2

2
ln

1þm
1þm� T

� �
þ T2

4
� ð1þmÞT

2

" #
¼ hDT2

2
: ð37Þ

Hence, the retailer’s annual total profit in (13) is reduced to:

TP1ðR; TÞ ¼ pKe½a�ðbþrÞ�R � cKeaR � o
T
� h

2
KeaRT

� cIc

2T
KeaRðT þ R� SÞ2 þ pIe

2T
KeaRðS� RÞ2: ð38Þ

Similarly, if there is no expiration date, then we get

TP2ðR; TÞ ¼ pKe½a�ðbþrÞ�R � cKeaR � o
T
� h

2
KeaRT

þ pIeKeaR S� R� T
2

� �
; ð39Þ

and

TP3ðR; TÞ ¼ pKe½a�ðbþrÞ�R � cKeaR � o
T
� h

2
KeaRT

� cIcKeaR R� Sþ T
2

� �
: ð40Þ

This simplified problem with r = 0 has been solved by Teng and Lou
(2012).

In fact, several previous models are indeed special cases of the
proposed inventory model here.

(i) When S = 0, and r = 0, then the proposed model is simplified
to that in Wang et al. (2014).

(ii) When m ?1 and r = 0, then the proposed model is reduced
to that in Teng and Lou (2012).

(iii) When m ?1, S = 0, and r = 0, then the proposed model is
the same as that in Lou and Wang (2013).

(iv) When m ?1, a = 0, b = 0, and r = 0, then the proposed
model is simplified to that in Teng and Goyal (2007).

(v) When m ?1, R = 0, a = 0, b = 0, and r = 0, then the proposed
model is similar to that in Teng (2002).

(vi) When m ?1, R = 0, p = c, a = 0, b = 0, and r = 0, then the pro-
posed model is reduced to that in Goyal (1985).

Numerical examples

In this section, we use LINGO 12.0 to run several numerical
examples in order to illustrate theoretical results as well as to gain
some managerial insights.

Example 1. Let’s assume a = 0.2/year, b = 0.1/year, r = 0.05/ year,
K = 1000 units/year, p = $15/unit, c = $10/ unit, o = $20/order,
h = $2/unit/year, S = 0.25 years (i.e., 3 months), and m = 1 year.
We check the following common condition first:

½a� ðbþ rÞ�2p� a2c ¼ 0:0375� 0:4 6 0:

By using software LINGO 12.0, we have the maximum solution to
TPi(R,T) for i = 1,2, and 3. as follow:

R�1 ¼ 0:1516 years; T�1 ¼ 0:0985 years; and TP�1 ¼ $4;275:71;

R�2 ¼ 0:0000 years; T�2 ¼ 0:0706 years; and TP�2 ¼ $4;625:52;

and

R�3 ¼ 0:2500 years; T�3 ¼ 0:0699 years; and TP�3 ¼ $4;109:00:

Consequently, the retailer’s optimal solution is:

R� ¼ 0:0000 years; T� ¼ 0:0706 years; and TP� ¼ $4;625:52:
Example 2. Using the same data as those in Example 1 except
S = 0.0548 years (i.e., 20 days), we obtain the following results:

R�1 ¼ 0:0000 years; T�1 ¼ 0:0710 years; and TP�1 ¼ $4;479:56;

R�2 ¼ 0:0000 years; T�2 ¼ 0:0548 years; and TP�2 ¼ $4;460:70;

and

R�3 ¼ 0:0548 years; T�3 ¼ 0:0712 years; and TP�3 ¼ $4;374:85:

Therefore, the retailer’s optimal solution is:

R� ¼ 0:0000 years; T� ¼ 0:0710 years; and TP� ¼ $4;479:56:
Example 3. Using the same data as those in Example 1 except
b = 0.01/year, p = $20/unit, and S = 0.0548 years (i.e., 20 days), we
get the following results:

½a� ðbþ rÞ�2p� a2c ¼ 0:392� 0:4 6 0;

R�1 ¼ 0:0000 years; T�1 ¼ 0:0703 years; and TP�1 ¼ $9;484:88;

R�2 ¼ 0:0000 years; T�2 ¼ 0:0548 years; and TP�2 ¼ $9;467:55;

and

R�3 ¼ 0:9718 years; T�3 ¼ 0:0651 years; and TP�3 ¼ $9;603:63:

Thus, the retailer’s optimal solution is:

R� ¼ 0:9718 years; T� ¼ 0:0651 years; and TP� ¼ $9;603:63:
Example 4. Using the same data as those in Example 3, we study
the sensitivity analysis on the optimal solution with respect to
each parameter in appropriate unit. The computational results
are shown in Table 1.

The sensitivity analysis reveals that: (i) if the value of a, K, p, or
o increases, then the values of R⁄ and TP⁄(R⁄,T⁄) increase while the
value of T⁄ decreases; (ii) by contrast, if the value of b increases,
then the values of R⁄ and TP⁄(R⁄, T⁄) decrease while the value of T⁄

increases; (iii) a higher value of c or h causes lower values of R⁄, T⁄,
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and TP⁄(R⁄,T⁄); and (iv) conversely, a higher value of m causes
higher values of R⁄, T⁄, and TP⁄(R⁄,T⁄). A simple economic interpre-
tation of (i) is as follows: if a is higher, then the effect of trade
credit R to demand (as well as annual profit) gets higher. Hence, a
higher value of a causes higher values of trade credit R⁄ and annual
total profit TP⁄(R⁄,T⁄) while a lower value of T⁄ to reduce holding
cost. Similarly, a simple economic interpretation of (iv) is as
follows: if the expiration date of the deteriorating item m is longer,
then it is worth to increase the trade credit R⁄ as well as the cycle
time T⁄ in order to increase the sales and the annual total profit
TP⁄(R⁄,T⁄). Likewise, one can easily interpret the rest of the
managerial insights by using the analogous argument.
Conclusions and future research

Taking care of both up-stream and down-stream trade credits
simultaneously for deteriorating items with expiration dates has
received relatively little attention from the researchers. In this pa-
per, we have built an EOQ model for the retailer to obtain its opti-
mal credit period and cycle time in a supplier-retailer-buyer
supply chain in which (a) the retailer receives an up-stream trade
credit from the supplier while offers a down-stream trade credit to
the buyer, (b) deteriorating items not only deteriorate continu-
ously but also have their expiration dates, and (c) down-stream
credit period increases not only demand but also opportunity cost
and default risk. Then we have proved that the optimal trade credit
and cycle time exist uniquely. Moreover, we have shown that the
proposed model is a generalized case for non-deteriorating items
and several previous EOQ models. Finally, we have used software
LINGO 12.0 to study the sensitivity analysis on the optimal solution
with respect to each parameter to illustrate the inventory model
and provide some managerial insights.

For future research, one can study the recent review paper of
trade credit literature by Seifert et al. (2013) who have derived a
detailed agenda for future research in trade credit financing. In
addition, we can extend the mathematical inventory model in sev-
eral ways. For example, one immediate possible extension could be
allowable shortages, cash discounts, etc. Also, one may generalize a
single player local optimal solution to an integrated cooperative
solution for both players, or a non-cooperative Nash or Stackelberg
equilibrium solution for each player. Finally, one can extend the
fully trade credit policy to the partial trade credit policy in which
a seller requests its credit-risk customers to pay a fraction of the
purchase amount at the time of placing an order as a collateral de-
posit, and then grants a permissible delay on the rest of the pur-
chase amount.
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Appendix A. Proof of Theorem 1

Let’s use (13) to define

f1ðTÞ ¼ pKe½a�ðbþrÞ�RT � cð1þmÞKeaR ln
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KeaRðS� RÞ2; ðA1Þ

and
g1ðTÞ ¼ T: ðA2Þ

Taking the first-order and second-order derivatives of f1(T), we have

f 01ðTÞ ¼ pKe½a�ðbþrÞ�R � cð1þmÞKeaR
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� hKeaR ð1þmÞ2
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" #
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Therefore, TP1ðR; TÞ ¼ f1ðTÞ

g1ðTÞ
is a strictly pseudo-concave function in T,

which completes the proof of Part (a) of Theorem 1. The proof of
Parts (b) and (c) immediately follows from Part (a) of Theorem 1.
This completes the proof of Theorem 1.

Appendix B. Proof of Theorem 2

From (21) let’s define

BðRÞ ¼ ½a� ðbþ rÞ�pKe½a�ðbþrÞ�R � acð1þmÞ
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Applying (23) and Lemma 1, and simplifying (21), we get

Bð0Þ ¼ KDR1; ðB2Þ

and
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Notice that in general both up-stream and down-stream credit peri-
ods are less than a year. Hence, we may assume without loss of gen-
erality that 1 � (S � R � 1)2 P 0.

Using Lemma 1, re-arranging (22), and the fact that T + R P S,
we have
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This completes the proof of Part (a) of Theorem 2.
If DR16 0, then B(0)6 0, B(R) < 0 for all R > 0, and TP1(R,T) is a

decreasing function in R. Hence, the retailer’s optimal down-stream
credit period is R�1 ¼ 0, which completes the proof of Part (b).

Finally, if DR1 > 0, then B(0) > 0, and limR?1B(R) = �1. By
applying the Mean-value Theorem and Part (a) of Theorem 2, we
know that there exists a unique R�1 > 0 such that BðR�1Þ ¼ 0. Conse-
quently, TP1(R,T) is maximized at the unique point R�1 > 0, which
satisfies (21). This completes the proof of Part (c) of Theorem 2.

Appendix C. Proof of Theorem 3

From (15), let’s define
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and

g2ðTÞ ¼ T: ðC2Þ

Taking the first-order and second-order derivatives of f2(T), we have
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2ð1þm� TÞ2
þ 1

2

" #
� pIeKeaR < 0:

ðC4Þ

Therefore, TP2ðR; TÞ ¼ f2ðTÞ
g2ðTÞ

is a strictly pseudo-concave function in T,
which completes the proof of Part (a) of Theorem 3. The proof of
Parts (b) and (c) immediately follows from Part (a) of Theorem 3.
This completes the proof of Theorem 3.

Appendix D. Proof of Theorem 4

Let’s use (25) to define

GðTÞ ¼ @TP2ðR; TÞ
@T

¼ 1
T2 oþ ð1þmÞKeaR c þ hð1þmÞ

2

� �
ln

1þm
1þm� T

� ���

� T
1þm� T

�	
� 1

4
ðhþ 2pIeÞKeaR: ðD1Þ

Then we know from (26) that

GðS� RÞ ¼ DT

ðS� RÞ2
: ðD2Þ

Using L’Hospital’s Rule, we obtain:

lim
T!0

1
T2 ln 1þm

1þm�T

� �
� 1
ð1þm�TÞT

h i
¼ lim

T!0

ð1þm�TÞ ln 1þm
1þm�Tð Þ�T

ð1þm�TÞT2

� �

¼ lim
T!0

� ln 1þm
1þm�Tð Þ

2Tþ2mT�3T2

� �
¼ lim

T!0

�1
ð2þ2m�6TÞð1þm�TÞ

h i
¼ �1

2ð1þmÞ2
:

ðD3Þ
By using (D1) and (D3), we get

lim
T!0

GðTÞ ¼ lim
T!0

�D
2ð1þmÞ c þ hð1þmÞ

2

� �
þ o

T2

� 	
� Dðhþ 2pIeÞ

4
¼ 1:

ðD4Þ

If DT < 0, then G(S � R) = DT/(S � R)2 < 0. By applying the Mean-va-
lue Theorem and Theorem 2, we know that there exists a unique
T�2 2 ð0; S� RÞ such that GðT�2Þ ¼ 0.

TP2ðTÞ is maximized at the unique point T�2; which satisfies ð25Þ:
ðD5Þ

By using the analogous argument, let’s use (20) to define

JðTÞ ¼ @TP1ðR; TÞ
@T

¼ 1
T2 oþ ð1þmÞKeaR c þ hð1þmÞ

2

� ��

� ln
1þm

1þm� T

� �
� T

1þm� T

� �	
þ KeaR

2T2 ðS� RÞ2ðcIc � pIeÞ

� KeaR

4
ðhþ 2cIcÞ: ðD6Þ

From (26) we get

JðS� RÞ ¼ DT= S� Rð Þ2 < 0; if DT < 0: ðD7Þ

From Theorem 1 and (D7), we know that J(T) < 0 for all T P S � R.
Hence,

for all T P S� R; TP1ðTÞ is decreasing and maximized at S� R: ðD8Þ

By using (16), (D5), and (D8), we obtain that if DT < 0, then

TP2ðT�2ÞPTP2ðS�RÞ¼TP1ðS�RÞPTP1ðTÞ; for all T PS�R: ðD9Þ

As a result, if DT < 0, then TP(T) is maximized at T�2. Thus, we com-
plete the proof of Part (a) of Theorem 4. By using the analogous
argument, one can prove the rest of Theorem 4. This completes
the proof of Theorem 4.

Appendix E. Proof of Theorem 5

By using (27) we define

EðRÞ ¼ ½a� ðbþ rÞ�pKe½a�ðbþrÞ�R � acð1þmÞ
T

KeaR ln
1þm

1þm� T

� �

� ah
T

KeaR ð1þmÞ2

2
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1þm
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4
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þ apIeKeaR S� R� T
2

� �
� pIeKeaR: ðE1Þ

Applying (29) and Lemma 1, and simplifying (27), we get

Eð0Þ ¼ KDR2; ðE2Þ

and

lim
R!1

EðRÞ¼ lim
R!1

KeaR ½a�ðbþ rÞ�pe�ðbþrÞR�acð1þmÞ
T

ln
1þm

1þm�T

� ��

�ahð1þmÞ
2

ð1þmÞ
T
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1þm

1þm�T

� �
�1

� �
�ahT

4

�pIe 1�a S�R�T
2

� �� �	
¼�1: ðE3Þ

Notice that in general both up-stream and down-stream credit peri-
ods are less than a year. Hence, we may assume without loss of gen-
erality that 1 � a(S � R � T/2) P 0.

Using Lemma 1, re-arranging (28), and the fact that T + R 6 S,
we have
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dEðRÞ
dR

¼ ½a� ðbþ rÞ�2pKe½a�ðbþrÞ�R � a2cKeaR ð1þmÞ
T

� ln
1þm

1þm� T

� �
� a2h

2
KeaRð1

þmÞ 1þm
T

ln
1þm

1þm� T

� �
� 1

� �
� 1

4
a2hTKeaR

� apIeKeaR 2� a S� R� T
2

� �� �
dEðRÞ

dR

< ½a� ðbþ rÞ�2pKeaR � a2cKeaR

6 0; if ½a� ðbþ rÞ�2p� a2c 6 0: ðE4Þ

This completes the proof of Part (a) of Theorem 5.
If DR2 6 0, then E(0) 6 0, E(R) < 0 for all R > 0, and TP2(R,T) is a

decreasing function in R. Hence, the retailer’s optimal down-
stream credit period is R�2 ¼ 0, which completes the proof of Part
(b).

Finally, if DR2 > 0, then E(0) > 0, and limR?1E(R) = �1. By apply-
ing the Mean-value Theorem and Part (a) of Theorem 5, we know
that there exists a unique R�2 > 0 such that EðR�1Þ ¼ 0. Consequently,
TP2(R,T) is maximized at the unique point R�2 > 0, which satisfies
(27). This completes the proof of Part (c) of Theorem 5.
Appendix F. Proof of Theorem 6

From (18), let’s define

f3ðTÞ ¼ pKe½a�ðbþrÞ�RT � cð1þmÞKeaR ln
1

1þm� T

� �
� o

� hKeaR ð1þmÞ2

2
ln

1þm
1þm� T

� �
þ T2

4
� ð1þmÞT

2
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� cIcKeaR RT � ST þ T2

2

 !
; ðF1Þ

and

g3ðTÞ ¼ T: ðF2Þ

Taking the first-order and second-order derivatives of f3(T), we have

f 03ðTÞ ¼ pKe½a�ðbþrÞ�R � 1
1þm� T

� hKeaR ð1þmÞ2

2ð1þm� TÞ þ
T
2
� 1þm

2

" #

� cIcKeaRðR� Sþ TÞ; ðF3Þ

and

f 003 ðTÞ ¼ �
cð1þmÞKeaR

ð1þm� TÞ2
� hKeaR ð1þmÞ2

2ð1þm� TÞ2
þ 1

2

" #
� cIcKeaR < 0:

ðF4Þ

Therefore, TP3ðR; TÞ ¼ f3ðTÞ
g3ðTÞ

is a strictly pseudo-concave function in T,
which completes the proof of Theorem 6.
Appendix G. Proof of Theorem 7

From (31) let’s define

NðRÞ ¼ ½a� ðbþ rÞ�pKe½a�ðbþrÞ�R � acð1þmÞ
T
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By using (33) and Lemma 1, and re-arranging (31), we get

Nð0Þ ¼ KDR3; ðG2Þ

and

lim
R!1

NðRÞ ¼ lim
R!1
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T ln 1þm
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h i
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By applying Lemma 1, re-arranging (32), and the fact that R P S, we
have

dNðRÞ
dR

¼ ½a� ðbþ rÞ�2pKe½a�ðbþrÞ�R � a2cKeaR ð1þmÞ
T

ln
1þm

1þm� T
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T

ln
1þm

1þm� T
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� 1

� �

�a2KeaR cIc R� Sþ T
2

� �
þ hT

4

� �

�acIcKeaR dNðRÞ
dR

< ½a� ðbþ rÞ�2pKeaR

�a2cKeaR ¼ KeaRf½a� ðbþ rÞ�2p� a2cg 6 0;

if ½a� ðbþ rÞ�2p� a2c 6 0: ðG4Þ

This completes the proof of Part (a) of Theorem 7.
If DR3 6 0, then N(0) 6 0, N(R) < 0 for all R > 0, and TP3(R,T) is a

decreasing function in R. Hence, the retailer’s optimal down-
stream credit period is R�3 ¼ 0, which completes the proof of Part
(b).

Finally, if DR3 > 0, then N(0) > 0, and limR?1N(R) = �1. By
applying the Mean-value Theorem and Part (a) of Theorem 7, we
know that there exists a unique R�3 > 0 such that NðR�3Þ ¼ 0. Conse-
quently, TP3(R,T) is maximized at the unique point R�3, which satis-
fies (31). This completes the proof of Part (c) of Theorem 7.
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